Bandwidth Selection in Kernel Distribution Function Estimation
نویسندگان
چکیده
منابع مشابه
Bandwidth Selection for Weighted Kernel Density Estimation
Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation me...
متن کاملDetermination of optimal bandwidth in upscaling process of reservoir data using kernel function bandwidth
Upscaling based on the bandwidth of the kernel function is a flexible approach to upscale the data because the cells will be coarse-based on variability. The intensity of the coarsening of cells in this method can be controlled with bandwidth. In a smooth variability region, a large number of cells will be merged, and vice versa, they will remain fine with severe variability. Bandwidth variatio...
متن کاملBandwidth selection for kernel estimation in mixed multi-dimensional spaces
Kernel estimation techniques, such as mean shift, suffer from one major drawback: the kernel bandwidth selection. The bandwidth can be fixed for all the data set or can vary at each points. Automatic bandwidth selection becomes a real challenge in case of multidimensional heterogeneous features. This paper presents a solution to this problem. It is an extension of [4] which was based on the fun...
متن کاملBandwidth Selection in Kernel Density Estimation: a Review
Allthough nonparametric kernel density estimation is nowadays a standard technique in explorative data{analysis, there is still a big dispute on how to assess the quality of the estimate and which choice of bandwidth is optimal. The main argument is on whether one should use the Integrated Squared Error or the Mean Integrated Squared Error to deene the optimal bandwidth. In the last years a lot...
متن کاملSemiparametric Localized Bandwidth Selection in Kernel Density Estimation
Since conventional cross–validation bandwidth selection methods do not work for the case where the data considered are serially dependent, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience shows that the use of a global bandwidth is however less suitable than using a localized bandwidth in ke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata
سال: 2015
ISSN: 1536-867X,1536-8734
DOI: 10.1177/1536867x1501500311